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Buildings are the largest energy-demanding sector in the world, representing over one third of the total
worldwide consumption and a similarly important source of CO2 emissions [15]. More than a half of
the energy consumption during the building life-cycle is due to the operation of the HVAC systems
(heating, ventilation and air conditioning) [27, 31]. Renovation works and retrofitting are essential to
progress towards highly-efficient buildings, and to be effective, they must be accompanied by suitable
operation protocols [22]. As a matter of fact, selecting optimal setpoints and deadbands for HVAC
control could alone lead to energy savings up to 35% while maintaining occupants’ comfort [12].
Nevertheless, most state-of-the-art technologies for automatic control cannot achieve these figures
[24], and those successful require a considerable effort to be adapted to different scenarios [4].

The overarching objective of this research initiative —namely IA4SG (Intelligent Agents for the
Smart Grid)— is to create the technologies supporting the smart energy control of the future building
ecosystem. Machine Learning has a tremendous potential to achieve great energy savings, reduce
contaminant emissions and make the best use of renewable resources at an affordable cost for the
building owners and residents [29]. We envision a future energy system in which building control will
be performed by autonomous self-adaptive agents that, with minimal configuration, will learn how to
operate the HVAC equipment more efficiently and how to collaborate with other actors of the grid. To
this aim, we pursue to develop new Deep Learning and Reinforcement Learning methods, algorithms
and tools to address three key issues: (A) generation of optimal control instructions for HVAC to
save energy while guaranteeing comfort; (B) simulation of buildings under different operations and
contexts; (C) coordination between components of the energy system to achieve an overall reduction
of the contaminant emissions. The concept behind IA4SG is shown in Figure 1:

A. Control optimization by Deep Reinforcement Learning (DRL): From the game board to
the building. An IA4SG agent teaches itself to efficiently operate the building from multiple
“trial and error” episodes, as AlphaZero did [30]. Since the agent requires a considerable number
of episodes to refine its skills, collection of such experience is not only performed on the real
building, but also on a simulation model (see B). This process is more complex if the agent has
capabilities for energy production and storage, which at the same time offers more possibilities
for improvement. Once the agent is trained, it can be deployed to operate the building and
updated as the scenario evolves. Preliminary works —-using hypothetical simple building models
with a reduced action space [2, 34, 38]–– suggest that HVAC control with DRL is feasible and
has potential to dramatically transform the area, since it would overcome scalability limitations
of similar control approaches based on data-driven simulation [36].

B. Deep neural simulation models (DNSM): Learning and predicting the building behaviour
from data. Instead of using a manually-crafted physical simulation model, the IA4SG agent
automatically learns a digital twin of the real building from historical sensor data. The simulation
model can be re-calibrated from live data. Learning is not performed from scratch, but by reusing
simulation models created for other scenarios (i.e. by performing transfer learning). Shallow
neural networks have been previously used to create data-driven simulation models, but only to
estimate consumption (not the whole environment state) at a microscale (not for a large section
of the building) [35]. Recently deep neural networks have proved to be useful to model single
HVAC components and simulate short-term thermal behavior [6, 10, 21].
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Figure 1: IA4SG concept

C. Cooperation among multiple energy system actors: Leveraging agent cliques to federa-
tions. An IA4SG agent cooperates with other agents in the energy system to trade energy in
order to maximize the overall use of clean energies in the whole grid. Each agent describes
and publishes its capabilities, resources and objectives, and after been trained to interact with
other agents, it is ready to negotiate energy acquisition and sharing by following established
protocols. Multi-Agent Systems (MAS) have been proposed before as a suitable technology
to manage different aspects of power systems [25] and buildings [20], given their capabilities
for autonomous organization, semantic interoperability, and system scalability. Analyses of
research on MAS applications for smart and micro grids have shown that MAS solutions are
feasible [18], but also that the increasing complexity and decentralization of the grid require novel
negotiation protocols, expressive knowledge models and advanced validation methods [7, 33].
Traditionally, agents’ interaction has been implemented by means of a formal specification of
their operational cycle [8]. More recently, optimization methods based on dynamic programming,
games theory, and heuristic search have shown better use of energy, although most of them
have still a centralized supervisory control which reduces the flexibility of the grid [39]. Recent
advances on multi-agent learning [32, 26, 16] will be put forward to train IA4SG agents.

This concept is different from the current approaches in the area. The prevalent paradigm for optimal
control in energy systems is Model Predictive Control (MPC) [19], in which a simulation model of
the building is used to estimate its response to alternative control sequences and situations. Physical
models —which characterize the thermal behavior of the building by using differential equations
encoding the principles of mass, energy and momentum transfer— have been traditionally used
in MPC, since they are interpretable and their accuracy exceeded that of data-driven models [3].
However, creating physical simulation models require a very significant human effort and running
them is very time-consuming. Hence, most works tend to simplify the models [28] —e.g. by reducing
the differential equations to linear combinations—, even though the accuracy and the coverage
of the simulation is a crucial aspect to avoid the generation of control instructions under wrong
assumptions [11]. Model simplification results in short-scope, limited-extensibility and reduced-
performance solutions involving a great deal of manual work [1]. Additionally, implementations for
joint management of groups of buildings in the grid are still scarce and not flexible enough for open
environments [37], since until recently most of them have assumed a centralized manually-designed
control [14]. Here we propose a decentralized self-learning system, taking into account the particular
features of each component while assuming a shared objective of reducing energy cost and increasing
the use of renewable sources.

We are confident that our proposal could create in 5 years the technologies to reduce a 30% the energy
consumed by buildings and increment a 30% the use of clean energies in grids, in line with current
regulations [9] and furthering other works with a narrower scope [5, 23, 17, 13]. Not only do we
expect a reduction on energy consumption and an increment on the use of renewable sources, but also
a reduction on the cost of controlling energy in buildings, which is crucial to achieve a widespread
adoption of climate mitigation technologies.
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Supplementary material

See Figures 2–4.

More information

https://jgromero.github.io/ia4sg/
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Figure 2: Deep neural simulation models (DNSM): Encoder-decoder architecture for a multivariate
deep recurrent neural network implementing a DNSM for HVAC. M is the number of training
samples and v is the number of variables.

Figure 3: Control optimization by Deep Reinforcement Learning (DRL): (left) building control
as a DRL problem, π gives preferred action probabilities for the current state s; (right) training from
multiple episodes collected from a real building and from a simulation. A DNSM is used to estimate
the agent learning rewards in terms of energy cost and discomfort.
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Figure 4: Cooperation among multiple energy system actors: An agent is trained on the virtual
training environment along with the avatars of other actors in the grid by repeated simulation. After
training, the new agent and the fully-collaborative agents are updated.

7


